RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, JUNE 2022

SECOND YEAR (BATCH 2020-23)

CHEMISTRY (HONOURS)

Time : 11.00 am - 1.00 pm

Date : 25/06/2022

Paper : X [CC10]

Full Marks : 50

[Use a separate Answer Book for <u>each unit</u>]

[Attempt one question from each unit]

Unit : I

[13 marks]

[12 marks]

- Give the d-orbital splitting patterns with explanation of complexes of formula ML_5 where M 1. a) stands for the first row transition metal ion and L, a monodentate ligand.
 - Explain how Jahn-Teller theorem influences the structure of Cu(II) complexes. b)
 - c) Give expressions for CFSE of Fe^{2+} ion in weak and strong octahedral crystal fields.
 - 10Dq value of hexaaquamanganese(III) ion is estimated from the electronic spectrum analysis to d) be 21000 cm⁻¹. The energy required for pairing per electron is 28800 cm⁻¹. Derive the possible spin state of the complex. [5+3+2+3]
- a) What is spin state isomerism? Explain with one example. 2.
 - b) F is an ionic species but a weaker field ligand than neutral H₂O, while CO is neutral molecule yet a stronger field ligand than H₂O. Explain.
 - c) Which one is more nephelauxtic ligand: CO or CN⁻ and why?
 - d) Depict the M. O. configuration of $[Co(NH_3)_6]^{3+}$ showing the Δ_0 parameter. [(2+1)+(2+2)+3+3]

Unit : II

- a) Both Ni(IV) and Co(III) are $3d^6$ systems but K₂[NiF₆] and K₃[CoF₆] show magnetic behavior 3. differently - Why?
 - With the help of an Orgel diagram, explain how many absorption bands are expected in the b) electronic spectra of $[Cr(H_2O)_6]^{3+}$. Label the energy labels and assign the transitions.

 - c) FeF₆]³⁻ is colourless but [Fe(SCN)₆]³⁻ is intensely deep red coloured-explain.
 d) The electronic spectrum of [Ti(H₂O)₆]³⁺ shows a broad band having peak at 20,100 cm⁻¹ and a shoulder at 17,400 Cm⁻¹. Assign the ligand field transitions for both the peak and the shoulder in given species. [3+4+3+2]
- a) Co²⁺ (3d⁷) has a magnetic moment in the range of 4.8-5.2 B. M. in high spin octahedral 4. complexes, while in tetrahedral environment the value is in the range 4.0 to 4.4 B. M. The reverse type of observation is true for Ni²⁺ complexes. Rationalize the given observations.
 - b) $[CrO_4]^{2-}$ is yellow while $[MoO_4]^{2-}$ or $[WO_4]^{2-}$ is colourless-why?
 - c) Electronic spectrum of $[CoF_6]^{3^2}$ shows two maxima in the visible region explain.
 - The corrected molar susceptibility of a paramagnetic material is 6.20×10^{-3} c.g.s units at 300 K. d) Find out the number of unpaired electrons. [4+2+4+2]

Unit : III

[13 marks]

- 5. What is common ion effect and solubility product? Explain their application during qualitative a) analysis of group-III metal ions.
 - b) How can you chemically prove that the two C_5H_5 rings in ferrocene can be freely rotated?
 - Comment on the stretching frequency data: \bar{y}_{c-0} (cm⁻¹) Ni(CO)₄ ~ 2060; Co(CO)⁴ ~ 1890; c) $Fe(CO)_4^{2-} \sim 1790$.
 - What is the different modes of binding of CO in metal Carbonyl? How would you identify the d) [(2+2)+3+3+3] same using IR data?

- 6. a) What is hapto-nomenclature? What are the advantages of hapto nomenclature? Give an example of mono, tri and penta-haptocyclopentadienyl complexes.
 - b) What is Zeise's salt and how it prepared? Explain the structure and bonding.
 - c) The C₂H₄ moiety in Zeise's salt can be freely rotated, Explain your answer with evidence.
 - d) Explain the redox behaviour of Ferrocene and cobaltocece. [(1+1+2)+(1+3)+3+2]

<u>Unit : IV</u>

[12 marks]

- 7. a) When $Mo(CO)_6$ reacts with an excess of CH_3CN , a pale yellow product A is formed. When compound A is refluxed with benzene, the paleyellow product B is formed which has the molecular formula $C_9H_6O_3Mo$ and shows a sharp singlet at $\delta = 5.5$ ppm in the ¹H NMR spectrum. When compound A is refluxed with cyclooctatetraene in hexane, compound C is formed which has the molecular formula $C_{11}H_8O_3Mo$. Identify the compound A, B and C.
 - b) $IrCl(CO)[P(C_6H_5)_3]_2$ -(trans-carbonylchlorobis(triphenylphosphine)iridium(I), popularly known as Vaska's complex can react with dihydrogen. What type of reaction it performed and what would be the geometry and oxidation state of the desired product?
 - c) $[Ru(C_2H_5)Cl(PPh_3)_3]$ is stable only under a pressure of ethene- why?
 - d) Why Zr and Hf have nearly same atomic radii?
 - e) What are the probable spin only magnetic moment values for Fe^{3+} system? [3+3+2+2+2]
- 8. a) The compound $(C_5H_5)_2Fe(CO)_2$ shows two peaks of equal area in the ¹H NMR spectrum but at lower temperature it shows four resonances of relative intensity 5:2:2:1. Explain.
 - b) H_2O_2 can be oxidized to O_2 by MnO_4^- in acidic as well as basic medium- justify with proper reaction.
 - c) What happens when a mixture of metal chloride is heated with potassium dichromate and conc. sulphuric acid?
 - d) When CH₃Mn(CO)₅ is treated with ¹³C labelled CO,(COCH₃)Mn(CO)₅ results as product but it has been observed that 25% of the product has no ¹³CO, 25% has ¹³CO trans to the alkyl group and 50% has ¹³CO cis to alkyl group. Justify the experimental observation to predict the reaction mechanism.
 - e) What happens when green vitriol is heated gradually from room temperature to 300°C and then at more higher temperature (700-800°C) [3+2+2+3+2]

_____ × _____